Radial symmetry of a relativistic Schrödinger tempered fractional p-Laplacian model with logarithmic nonlinearity
نویسندگان
چکیده
In this paper, by introducing a relativistic Schrödinger tempered fractional p-Laplacian operator (–Δ)p,λs,m, based on the (–Δ + m2)s and Laplacian (Δ λ)β/2, we consider model involving logarithmic nonlinearity. We first establish maximum principle boundary estimate, which play very crucial role in later process. Then obtain radial symmetry monotonicity results using direct method of moving planes.
منابع مشابه
BIFURCATION ALONG CURVES FOR THE p-LAPLACIAN WITH RADIAL SYMMETRY
We study the global structure of the set of radial solutions of a nonlinear Dirichlet eigenvalue problem involving the p-Laplacian with p > 2, in the unit ball of RN , N > 1. We show that all non-trivial radial solutions lie on smooth curves of respectively positive and negative solutions, bifurcating from the first eigenvalue of a weighted p-linear problem. Our approach involves a local bifurc...
متن کاملHopf’s Lemma and Constrained Radial Symmetry for the Fractional Laplacian
In this paper we prove Hopf’s boundary point lemma for the fractional Laplacian. With respect to the classical formulation, in the non-local framework the normal derivative of the involved function u at z ∈ ∂Ω is replaced with the limit of the ratio u(x)/(δR(x)) , where δR(x) = dist(x, ∂BR) and BR ⊂ Ω is a ball such that z ∈ ∂BR. More precisely, we show that lim inf B∋x→z u(x) (δR(x)) > 0 . Als...
متن کاملOn a class of nonlinear fractional Schrödinger-Poisson systems
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + V (x)u + φu = m(x)|u|q−2|u|+ f(x,u), x ∈ Ω, (−∆t)φ = u2, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where s,t ∈ (0,1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x,u) is linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence of non-trivial so...
متن کاملEigenvalue of Fractional Differential Equations with p-Laplacian Operator
Differential equations of fractional order have been recently proved to be valuable tools in the modeling of many phenomena arising from science and engineering, such as viscoelasticity, electrochemistry, control, porous media, and electromagnetism. For detail, see the monographs of Kilbas et al. [1],Miller and Ross [2], and Podlubny [3] and the papers [4–23] and the references therein. In [16]...
متن کاملPositive radial solutions for p-Laplacian systems
The paper deals with the existence of positive radial solutions for the p-Laplacian system div(|∇ui| ∇ui) + f (u1, . . . , un) = 0, |x| < 1, ui(x) = 0, on |x| = 1, i = 1, . . . , n, p > 1, x ∈ R . Here f , i = 1, . . . , n, are continuous and nonnegative functions. Let u = (u1, . . . , un), ‖u‖ = ∑n i=1|ui|, f i 0 = lim‖u‖→0 f(u) ‖u‖p−1 , f i ∞ = lim‖u‖→∞ f(u) ‖u‖p−1 , i = 1, . . . , n, f = (f1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis-Modelling and Control
سال: 2022
ISSN: ['1392-5113', '2335-8963']
DOI: https://doi.org/10.15388/namc.2023.28.29621